Pablo Ortiz

Contactless, autonomous robotic alignment of optical coherence tomography for in vivo evaluation of diseased retinas

, , , , , , , , ,

During the COVID-19 pandemic, an emphasis was placed on contactless, physical distancing and improved telehealth; contrariwise, standard-of-care ophthalmic imaging of patients required present, trained personnel. Here, we introduce contactless, autonomous robotic alignment of optical coherence tomography (RAOCT) for in vivo imaging of retinal disease and compare measured retinal thickness and diagnostic readability to technician operated clinical OCT. In a powered study, we found no statistically significant difference in retinal thickness in both healthy and diseased retinas (p > 0.7) or across a variety of demographics (gender, race, and age) between RAOCT and clinical OCT. In a secondary study, a retina specialist labeled a given volume as normal/abnormal. Compared to the clinical diagnostic label, sensitivity/specificity for RAOCT were equal or improved over clinical OCT. Contactless, autonomous RAOCT, that improves upon current clinical OCT, could play a role in both ophthal...

Robotic Optical Coherence Tomography Retinal Imaging for Emergency Department Patients: A Pilot Study for Emergency Physicians’ Diagnostic Performance

, , , , , , , , , , ,

Study objective To evaluate the diagnostic performance of emergency physicians’ interpretation of robotically acquired retinal optical coherence tomography images for detecting posterior eye abnormalities in patients seen in the emergency department. Methods Adult patients presenting to Duke University Hospital emergency department from November 2020 through October 2021 with acute visual changes, headache, or focal neurologic deficit(s) who received an ophthalmology consultation were enrolled in this pilot study. Emergency physicians provided standard clinical care, including direct ophthalmoscopy, at their discretion. Retinal optical coherence tomography images of these patients were obtained with a robotic, semi-autonomous optical coherence tomography system. We compared the detection of abnormalities in optical coherence tomography images by emergency physicians with a reference standard, a combination of ophthalmology consultation diagnosis and retina specialist optical cohe...

Robotically aligned optical coherence tomography with 5 degree of freedom eye tracking for subject motion and gaze compensation

, , , , , ,

Optical coherence tomography (OCT) has revolutionized diagnostics in ophthalmology. However, OCT requires a trained operator and patient cooperation to carefully align a scanner with the subject’s eye and orient it in such a way that it images a desired region of interest at the retina. With the goal of automating this process of orienting and aligning the scanner, we developed a robot-mounted OCT scanner that automatically aligned with the pupil while matching its optical axis with the target region of interest at the retina. The system used two 3D cameras for face tracking and three high-resolution 2D cameras for pupil and gaze tracking. The tracking software identified 5 degrees of freedom for robot alignment and ray aiming through the ocular pupil: 3 degrees of translation (x, y, z) and 2 degrees of orientation ( yaw , pitch ). We evaluated the accuracy, precision, and range of our tracking system and demonstrated imaging performance on free-standing human subjects. Our re...

Contactless optical coherence tomography of the eyes of freestanding individuals with a robotic scanner

, , , , , , ,

Clinical systems for optical coherence tomography (OCT) are used routinely to diagnose and monitor patients with a range of ocular diseases. They are large tabletop instruments operated by trained staff, and require mechanical stabilization of the head of the patient for positioning and motion reduction. Here we report the development and performance of a robot-mounted OCT scanner for the autonomous contactless imaging, at safe distances, of the eyes of freestanding individuals without the need for operator intervention or head stabilization. The scanner uses robotic positioning to align itself with the eye to be imaged, as well as optical active scanning to locate the pupil and to attenuate physiological eye motion. We show that the scanner enables the acquisition of OCT volumetric datasets, comparable in quality to those of clinical tabletop systems, that resolve key anatomic structures relevant for the management of common eye conditions. Robotic OCT scanners may enable the diagn...


Organizations in the News

OCT Companies in the News

Picture Gallery