Gavrielle R. Untracht

Pilot study of optical coherence tomography angiography-derived microvascular metrics in hands and feet of healthy and diabetic people

, , , , , , ,

Optical coherence tomography angiography (OCTA) is a non-invasive, high-resolution imaging modality with growing application in dermatology and microvascular assessment. Accepted reference values for OCTA-derived microvascular parameters in skin do not yet exist but need to be established to drive OCTA into the clinic. In this pilot study, we assess a range of OCTA microvascular metrics at rest and after post-occlusive reactive hyperaemia (PORH) in the hands and feet of 52 healthy people and 11 people with well-controlled type 2 diabetes mellitus (T2DM). We calculate each metric, measure test–retest repeatability, and evaluate correlation with demographic risk factors. Our study delivers extremity-specific, age-dependent reference values and coefficients of repeatability of nine microvascular metrics at baseline and at the maximum of PORH. Significant differences are not seen for age-dependent microvascular metrics in hand, but they are present for several metrics in the foot. Signi...

Pilot study of optical coherence tomography angiography-derived microvascular metrics in hands and feet of healthy and diabetic peopl

, , , , , , ,

Optical coherence tomography angiography (OCTA) is a non-invasive, high-resolution imaging modality with growing application in dermatology and microvascular assessment. Accepted reference values for OCTA-derived microvascular parameters in skin do not yet exist but need to be established to drive OCTA into the clinic. In this pilot study, we assess a range of OCTA microvascular metrics at rest and after post-occlusive reactive hyperaemia (PORH) in the hands and feet of 52 healthy people and 11 people with well-controlled type 2 diabetes mellitus (T2DM). We calculate each metric, measure test–retest repeatability, and evaluate correlation with demographic risk factors. Our study delivers extremity-specific, age-dependent reference values and coefficients of repeatability of nine microvascular metrics at baseline and at the maximum of PORH. Significant differences are not seen for age-dependent microvascular metrics in hand, but they are present for several metrics in the foot. Signi...

OCTAVA: An open-source toolbox for quantitative analysis of optical coherence tomography angiography images

, , , , , , , , ,

Optical coherence tomography angiography (OCTA) performs non-invasive visualization and characterization of microvasculature in research and clinical applications mainly in ophthalmology and dermatology. A wide variety of instruments, imaging protocols, processing methods and metrics have been used to describe the microvasculature, such that comparing different study outcomes is currently not feasible. With the goal of contributing to standardization of OCTA data analysis, we report a user-friendly, open-source toolbox, OCTAVA (OCTA Vascular Analyzer), to automate the pre-processing, segmentation, and quantitative analysis of en face OCTA maximum intensity projection images in a standardized workflow. We present each analysis step, including optimization of filtering and choice of segmentation algorithm, and definition of metrics. We perform quantitative analysis of OCTA images from different commercial and non-commercial instruments and samples and show OCTAVA can accurately and re...

Imaging the small with the small: Prospects for photonics in micro-endomicroscopy for minimally invasive cellular-resolution bioimaging

, ,

Many bioimaging studies, including those in engineered tissue constructs, intravital microscopy in animal models, and medical imaging in humans, require cellular-resolution imaging of structures deep within a sample. Yet, many of the current approaches are limited in terms of resolution, but also in invasiveness, repeatable imaging of the same location, and accessible imaging depth. We coin the term micro-endomicroscope to describe the emerging class of small, cellular-resolution endoscopic imaging systems designed to image cells in situ while minimizing perturbation of the sample. In this Perspective, we motivate the need for further development of micro-endomicroscopes, highlighting applications that would greatly benefit, reviewing progress, and considering how photonics might contribute. We identify areas ripe for technological development, such as micro-scanners and small lens systems, that would advance micro-endomicroscope performance. With the right developments in photonics...

Photonic force optical coherence elastography for three-dimensional mechanical microscopy

, , , ,

Optical tweezers are an invaluable tool for non-contact trapping and micro-manipulation, but their ability to facilitate high-throughput volumetric microrheology of biological samples for mechanobiology research is limited by the precise alignment associated with the excitation and detection of individual bead oscillations. In contrast, radiation pressure from a low-numerical aperture optical beam can apply transversely localized force over an extended depth range. Here we present photonic force optical coherence elastography (PF-OCE), leveraging phase-sensitive interferometric detection to track sub-nanometer oscillations of beads, embedded in viscoelastic hydrogels, induced by modulated radiation pressure. Since the displacements caused by ultra-low radiation-pressure force are typically obscured by absorption-mediated thermal effects, mechanical responses of the beads were isolated after independent measurement and decoupling of the photothermal response of the hydrogels. Volumet...

Photonic force optical coherence elastography for threedimensional mechanical microscopy

, , , ,

Optical tweezers are an invaluable tool for non-contact trapping and micro-manipulation, but their ability to facilitate high-throughput volumetric microrheology of biological samples for mechanobiology research is limited by the precise alignment associated with the excitation and detection of individual bead oscillations. In contrast, radiation pressure from a low numerical aperture optical beam can apply transversely localized force over an extended depth range. We propose photonic force optical coherence elastography (PF-OCE), leveraging phase-sensitive interferometric detection to track sub-nanometre oscillations of beads, embedded in viscoelastic hydrogels, induced by modulated radiation pressure. Since the displacements caused by ultra-low radiation-pressure force are typically obscured by absorption-mediated thermal effects, mechanical responses of the beads were isolated after independent measurement and decoupling of the photothermal response of the hydrogels. Volumetric i...

GPU-based computational adaptive optics for volumetric optical coherence microscopy

, , , ,

Optical coherence tomography (OCT) is a non-invasive imaging technique that measures reflectance from within biological tissues. Current higher-NA optical coherence microscopy (OCM) technologies with near cellular resolution have limitations on volumetric imaging capabilities due to the trade-offs between resolution vs. depth-of-field and sensitivity to aberrations. Such trade-offs can be addressed using computational adaptive optics (CAO), which corrects aberration computationally for all depths based on the complex optical field measured by OCT. However, due to the large size of datasets plus the computational complexity of CAO and OCT algorithms, it is a challenge to achieve high-resolution 3D-OCM reconstructions at speeds suitable for clinical and research OCM imaging. In recent years, real-time OCT reconstruction incorporating both dispersion and defocus correction has been achieved through parallel computing on graphics processing units (GPUs). We add to these methods by imple...

Categories

Organizations in the News

OCT Companies in the News

Picture Gallery